ECRI Institute Overview

- ECRI Institute is an independent, not-for-profit, research organization.
- For 40 years we have dedicated ourselves to:
 - Bringing the discipline of applied scientific research to discover which technologies and patient care approaches are best.
- We are one of only a handful of organizations designated as:
 - Collaborating Center of the World Health Organization
 - Evidence-based Practice Center by the AHRQ (U.S. Agency for Healthcare Research and Quality)
- The only Consumer Reports-like evaluator of healthcare technology.
Physiologic Monitoring Systems

- A system that continuously monitors invasive and non-invasive physiologic parameters.

- The system can consist of:
 - Bedside monitor
 - Telemetry unit
 - Central station
 - Associated network components (e.g., switches, servers, antenna system)
What can physiologic monitoring systems connect to?

- It varies depending on the care area
 - ADT
 - EMR
 - Anesthesia/perioperative documentation systems
 - Sleep Lab documentation systems
 - ECG data management systems
 - LIS
 - PACS

Often via third-party integrators.
Hospital Interviews

► Wide range of facilities
 ■ Teaching hospitals
 ■ 200 bed hospitals

► Wide range of vendors
 ■ Physiologic monitoring system vendors
 ■ EMR vendors

► Wide range of input
 ■ Clinical Engineering (CE)
 ■ IS departments
 ■ Nursing
One size fits all?

Hospitals can have very different connectivity solutions

- Physiologic monitoring system vendor
- EMR vendor
- Third-party integrator
- Date of the installation
- Hospital-specific decision factors (e.g., workflow, resources)
User Experience – Rate of Adoption

EMR / ADT

- Less connectivity than might be expected
 - Many competing priorities
- Currently, some facilities have:
 - Just an ADT feed
 - Just an EMR export
 - Both an ADT and EMR interface
- Experience is typically a year or less
 - Specifically with physiologic monitoring connectivity to the EMR
User Experience – Rate of Adoption

Clinical Access to Data at the Bedside

- Fairly rare to date
- Planned as a future project
- Preferred feature
- Some clinicians love it
 - Feature as an icon on EMR system
Connectivity Project Management

Drivers:

- HITECH Act
- Efficient clinician workflows
- Improved patient safety

Goals:

- Want clinicians to trust the technology
- Want the process to be as seamless for clinicians as possible
- Want the project to be a success with minimal hiccups
Connectivity Project Management

Approaches:
- Pilot is typical
- “Big bang” method
- Staggered approach

Project becomes more challenging if:
- Connecting two different physiologic monitoring systems to a single EMR
- Connecting one or more physiologic monitoring systems to multiple EMRs
User Experience – Project Management

- EMR project timelines are extremely tight
 - Creation of interfaces
 - Testing
- Training for clinicians is a priority
- Generally speaking, good support from vendors
- Go-live is “intense” for CE and IT staff
- Highlights the need for good collaboration between CE and IT departments
User Experience – Lessons Learned during Projects

- Ensure consistency in data
 - Nomenclature
 - Units
 - Mapping of fields

- Understand how the times associated with different measurements are handled
 - NIBP measurement vs. NIBP time posting into the EMR
Areas to Consider

- Patient association / patient disassociation
- Patient transfer
 - Single patient record
 - Avoid gaps in the data
- Validation of data
Change Management

- All changes must be assessed, approved, and implemented in a controlled manner

- Includes:
 - New software applications
 - New network appliances
 - Security changes
 - Planned upgrades
 - Planned maintenance
 - Hardware, firmware, or software upgrades
Software Management

- Convergence intermingles medical software with nonmedical software
 - Increases the likelihood of interference between different software coding elements
- The more integrated systems become, the more one part of the system can affect the whole
- Understand the hierarchies of software
 - Will an upgrade to a medical device affect data exchange into an information system?
Understanding Software Issues

- Potential large source of error
 - Difficult to test for all software defects
 - Numerous lines of code
 - Hard to anticipate every work flow or clinical process
- Despite good V&V, many software anomalies are found after public release of the product
Software Changes

Software revisions required to:

- Upgrade to a desired feature or enhancement
- Support desired interoperability between systems
- Revision level no longer supported
 - Medical device manufacturer
 - EMR vendor
- Fix a known problem
User Experience – Software Management

- Change management is crucial
 - One change can cause other parts of the system to fail or perform in unexpected ways
 - 1-3 issues can arise with one software upgrade
- Testing before implementation is critical
- Several hospitals mentioned that software revision levels were being discussed
 - EMR vendors may only support certain medical device revision levels
Software-Based Hazards and Recalls

- ECRI Institute’s *Health Devices Alerts* database contains hazard and recall information since 1982
- Searched “active” & “completed” action items
- Search parameter = *software*
- Past 15-year trend
ECRI Institute's *Health Devices Alerts* Database: Percentage of Software-Related Hazards & Recalls
- A17054 – Critical priority
 Mindray – V Series Patient Monitors: System Database Corruption May Occur, Potentially Causing Monitor to Reset and Lead to Temporary Loss of Monitoring

- A16058 02 – High priority
 GE – Model 3000, Model 4000, and Model 5000 DASH Patient Monitors Used with LA-4137 Wireless LAN Cards: Patient Monitoring, Vital Signs Data, and Alarms May be Lost

- H0150 – High Priority
 Patient Data from Philips IntelliVue Monitors May Appear on Wrong XDS Remote Display

- Main target audience is the healthcare facility
- Risk management is required for the life cycle of the medical IT-network
IEC 80001-1’s Three “Key Properties”

- Risk management should be applied to address the balance of the key properties
 - Safety
 - Effectiveness
 - Data and system security

Obtain from:
http://www.aami.org/publications/standards/80001.html
User Experience - Problem Resolution

- Troubleshooting problems is more difficult
 - More points of failure
 - More vendors to deal with
 - Finger pointing
- Typically, hospital staff need to solve the issue with input from vendors
- Need the vendors to know their technology inside and out
Physiologic Monitoring Connectivity: More than just Interfaces

- Connectivity involves much more than just technology
- System of systems
- Brings CE-IT collaboration to the forefront
- Highlights the need for:
 - Good policies and procedures
 - Good contracts
 - Good relationships with vendors
 - Good understanding of clinical work processes
Connectivity: Final Thoughts

- Very few facilities with more advanced interoperability
- Generally speaking, clinicians are satisfied with medical device integration project outcomes and view connectivity as having a positive effect on their daily work processes.
- In part, connectivity provides data to permit health facilities to measure their performance. Creating baseline measurements are key to continued process and quality improvement.
Industry Initiatives

- CE-IT Community
 http://www.ceitcollaboration.org/

- Integrating the Healthcare Enterprise (IHE)
 http://www.ihe.net/

- Medical Device “Plug and Play” Interoperability Program (MD PnP)
 http://mdpnp.org/Home_Page.php
ECRI Institute Resources

- April 2012 issue of *Health Devices*

- October 2011 issue of *Health Devices*

- September 2011 issue of *Health Devices*
 - Vital Signs Monitoring Systems: A Look at Seven Monitors and Their Connectivity Solutions [Evaluation]